
L _

w

m

Assessment of A Human Computer Interface

Prototyping Environment

Final Report

Delivery Order No. 16
Basic NASA Contract No. NAS 8-39131

w

Department of Computer Science and Engineering
Auburn University, AL 36849-5347

Contact Loretta A. Moore, Ph.D.

Principal Investigator
(205) 844-6330
moore@eng.auburn.edu

w

July 15, 1993

i

!

w

Report Documentation Pa£,e
NASA

NATIONAl. AERONAUTICal •

SPACE AOMINISTRATION

2. OOVE_ ACCESSION NO

Assessment of a Human Computer Interface

Prototyping Environment

7 AU I_K_($|

Loretta A. Moore, Ph.D.

Auburn University

Computer Science and Engineering

Auburn University, AL 36849-5347

National Aeronautfcs and Space Administration

Washington, D.C. 20546-0001

Marshall Space Flight Center, MSFC, AL 35812

3 FtEClPIENT'SCAIALOO NO

£. RE.A.SO_ OA T'E

May 15, 1993

6 PEI_OP_NO _M ZA T IC_ CC(_

CSE, Auburn University

II p_ERFC_V,_NG (3_OuAt_ ZA TK3_ P(_ T NO

CSE 93-08

tO. WORK UNIT NO.

Delivery Order No. 16

it. _N I _C T OA Q/:UkNT

Basic NASA Contract No.

NAS8-39131

Final Report

March 8-May 15, 1993

t4. _"ONSO_NO AGENCY COOE

]

115. ASSTFLAC T

A Human Computer Interface (HCI) prototyping environment with embedded evaluation

capability has been successfully assessed which will be valuable in developing and

refining HCI standards and evaluating program/project interface development,

especially Space Station Freedom on-board displays for payload operations. The HCI

prototyping environment is designed to include four components: (I) a HCI format

development tool, (2) a test and evaluation simulator development tool, (3) a dynamic,

interactive interface between the HCI prototype and simulator, and (4) an embedded

evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

17. KE'Y V_=[_8 (SlK_3 E 8 TE O g Y _JT HOF_ |

Human Computer Interaction, Graphical

User Interface Simulator

Unclassified _assified

I

II BSI_BUIION ITA_E_N_

Unlimited

;tl. NO O_: PAGES

27

Assessment of A Human Computer Interface

Prototyping Environment

Final Report

Delivery Order No. 16
Basic NASA Contract No. NAS8-39131

Loretta A. Moore, Ph.D.

Principal Investigator

July 15, 1993

Abstract

A Human Computer Interface (HCI) prototyping environment with embedded
evaluation capability has been successfully assessed which will be valuable in developing and
refining HCI standards and evaluating program/project interface development, especiall, y Space
Station Freedom on-board displays for payload operations. The HCI prototyping envxronment

is designed to include four components: (1) a HCI format development tool, (2) a test and
evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI
prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of
an HCI based on a user's performance. The objectives of this research were to evaluate
components 1, 2, and 4. The system which was chosen for empirical evaluation of this HCI
prototyping environment was an automobile. Components of the dynamic prototyping
environment were assessed in a two phase effort. During Phase I, the requirements for the
automobile interface and simulator were developed, also during this phase prototypes of the
interface and simulator were developed. During Phase II, evaluation criteria for the operation
of the automobile prototype were developed.

w

w

r"

w

7

ACKNOWLEDGEMENTS

We appreciate the assistance provided by NASA personnel, especially Mr. Joseph P.
Hale whose guidance has been of great value. The following is an alphabetical listing of the
team members who have participated on the project.

Principal Investigator:

Loretta A. Moore, Ph.D.

Graduate Research Assistants:

William Owen
Shannon Price

Yauwen Wang

The following trademarks are referenced in the text of this report.

Sammi is a trademark of Scientific Software-Intercomp.

PERCNET is a registered trademark of Perceptronics, Inc.

w
ii

w

w

_m

m

r--

.-4
1F

W

TABLE OF CONTENTS

1.0 Introduction ... 1

2.0 Simulator .. 2

2.1 Simulation Systems ... 2

2.2 Automobile Simulator ... 2

2.3 Implementation .. 3

2.4 Assumptions and Details ... 5

2.5 Simulation .. 10

2.6 Future Enhancements ... 11

3.0 Human-Computer Interface ... 12

3.1 Implementation of the Automobile Interface 12

3.2 Detailed Description ... 12

4.0 Evaluation ... 16

5.0 Conclusions ... 16

REFERENCES .. 17

APPENDICES

Appendix A - Rule Base .. 18

Appendix B - Criteria for Evaluation of the Automobile Interface 21

m

r_

n

L_

w

m

w

w

°°,

lU

r •

u

w

w

LIST OF FIGURES

Figure 1. Simulation System ... 2

Figure 2. Automobile Simulator ... 3

Figure 3. Sample Petri Net ... 4

Figure 4. Percnet Structure for Automobile Example ... 5

Figure 5. Top-Level Petri Net of the Automobile Simulator 6

Figure 6. Engine Running Subnet .. 7

Figure 7. Calc/Acc Subnet ... 9

Figure 8. RPMs vs Speed for each Gear ... 9

Figure 9. Ideal Simulation Architecture .. 11

Figure 10. Automobile Interface ... 13

w

F

w

m

m

w

m

iv

m

!

=

=

w

L _

w

1.0 Introduction

The objective of the project was to assess a Human Computer Interface (HCI)
prototyping environment that includes: (1) an HCI format development tool, (2) a test and
evaluation simulator development tool, and (3) the capability to provide a dynamic, interactive
interface between the resultant prototyped HCIs and simulators, and (4) an embedded

capability to evaluate the adequacy of an HCI based on a user's performance.

The HCI format development tool allows the designer to develop static displays
dynamically. The test and evaluation simulator development tool will allow the functionality of
the system to be implemented and will act as a driver for the displays. The d .ynamic, interactive
interface will handle communication between the HCI prototyping envxronment and the
simulation environment. The embedded evaluation tool will perform the evaluation of the

Human-Computer Interaction in terms of specific evaluation measures.

The system which was chosen for empirical evaluation of this HCI prototyping
environment was an automobile. An automobile was chosen because it has sufficient

complexity and subsystems interdependencies to provide a moderate amount of operational
workload. Further, potential subjects in the empirical studies would have a working
understanding of an automobile's functionality, thus minimizing pre-experiment training
requirements.

An extremely important aspect of the prototyping process is the ability to evaluate the
adequacy of the prototyped HCIs. The goal of evaluation is to not'only determine if an HCI is
deficient, but point to specific aspects or attributes of the HCI that need improvement.
Relevant evaluation data based on the user's interaction with the simulator through the HCI will

be automatically collected and logged during the evaluation session. The system would then
produce evaluation reports following the session.

Components of the dynamic prototyping environment were assessed in a two phase
effort. During Phase I, the requirements for the automobile interface and simulator were
developed, also during this phase prototypes of the interface and simulator were developed.
During Phase II, evaluation criteria for the operation of automobile prototype were developed.
A listing of the specific tasks which were performed are presented below.

(1) Requirements were developed for the automobile simulator.

(2) The automobile simulator was developed using PERCNET, a graphical

modeling and knowledge-based simulation development environment.

(3) A Human Computer Interface (HCI) for operating the automobile simulator was
developed using Sammi, a HCI development environment.

(4) Evaluation criteria for the operation of the automobile simulator were
developed.

The products of this effort include an understanding of the preliminary requirements for a
dynamic HCI prototyping environment and a test and evaluation simulator development tool, a
prototype of an automobile using the test and evaluator simulator development tool, a human
computer interface for the automobile prototype using the HCI development tool, and
evaluation criteria for the operation of the automobile simulator. The following sections

describe in detail the tasks which have been completed.

L__

." i

M

2.0 Simulator

Two common problems that arise in any system (computer system or otherwise) occur
when the developer has an incomplete or inaccurate conception of system requirements and
when users' needs are ignored as the central concern of development. A lack of understanding
will lead to an error-ridden system that hinders user's productivity. If a computer system is

developed to file tax returns can the system be considered an asset if calculations have to be
double checked? The look and feel of a system are major factors when users evaluate a

system. If users do not enjoy using a system, they will not use it effectively (if at all)
regardless of the quality of the system.

Simulation of a system provides a means of studying a system with minimal expense or

risk and an opportunity to study the effects of variations in the system. Thus, it facilitates a
deeper understanding of the behavior of the system in that it tests the developer's own
understanding of the problem at hand. If the developer overlooked certain possibilities or
inaccurately represented certain aspects of the system, these should be apparent in the
simulation. Expense and effort toward implementing a fault-ridden system would be reduced.

The effectiveness of a system depends to a great extent on the comfort of the user. If a
user is unhappy with the feel of a system it is likely to impact the performance of the user. A
simulation allows evaluation of various strategies for the operation of the system. That is, the
developer is able to study the effectiveness of the user interface. If the user has problems with
some portion of the interaction, the developer will be able to change that portion to assist the
user.

2.1 Simulation Systems

A system to develop simulations to provide the support mentioned above can be
described by the structure shown in Figure 1. This structure, or architecture, keeps the system
to be modeled separate from the user interface to facilitate changes in the architecture. The user
interface is able to send inputs to and accept outputs from the model. The environment may
also have some effects on the model as is shown in the figure. Notice here that the simulation
is actually composed of two models: a model of the system as well as a model of the
environment.

_r

r__

User

_- ..

i

____ser Interfac --_ Simulator _ EnviOrnment

t. ...

I

Figure 1 - Simulation System

2.2 Automobile Simulator

The simulation architecture was used in this research to model an automobile. Figure 2

demonstrates how an automobile system could be mapped onto the architecture described

2

above.Themaincomponentof theautomobileis theenginewhichrespondsto inputsfrom the
driver (e.g.,thedriver shiftsgearsor pressestheacceleratorpedal)andfactorsfrom theeffects
of theenvironment(e.g.,climbing ahill causesadecreasein thespeedof thecar). Thedriver
changesinputs to obtaindesiredperformanceresults. If the car slows down climbing a hill,
pressing the accelerator closer to the floorboard will counteract the effects of the hill.

w

m

n

Driver

Figure 2 - Automobile Simulator

w

w

In developing a simulation, first it is important to decide what level of detail will be
needed. For purposes of this research, a low fidelity simulator will be developed. For the
automobile simulator the following questions were asked: Should the simulation represent one
particular automobile or automobiles in general? Since automobiles are composed of thousands
of parts, which of these parts are needed to provide an accurate simulation? It was necessary to
list the major components of the automobile and examine each in terms of importance of the
operation of the automobile both from the driver's perspective and the engine's.

The simulator which has been developed here has modeled automobiles in general.
Various choices have been made and in most cases the decisions have been based on how

common a particular feature is. For example, a fuel injection system for delivery of fuel to the
engine would affect the performance of the automobile, but fuel injection is not an option for
many cars and has not been modeled in the simulator. A survey of general automobile repair
books has led to the list of the most important components of automobiles in general. This
system remains low-fidelity, however, comments throughout the system description should
leave no doubt that higher fidelity systems may be achieved as well.

2.3 Implementation

The software which has been used to implement the model is Percnet. Percnet uses
modified Petri nets to model the system. Petri nets have been designed to model systems with
interactive and concurrent components. Each component is an object with its own state
information. The state of the component determines which actions, if any may be performed

and may depend on previous actions of the component. Pictorially, Petri nets show systems of
activities and events. Activities describe actions performed by the system. Activities are joined

by events that occur during execution. Flow of control, represented by tokens passing through
the system, passes from activities to events and vice versa. Before an event can titre, that is,
pass control beyond the event at the next activity, all incoming arcs must have tokens. When
this occurs, the event places tokens on all outgoing arcs passing control to activities. A sample

Petri net is shown in Figure 3.

3

w

= :

=

z 7

Start End

Figure 3 - Sample Petri Net

In this Petri Net, event E1 will occur immediately. One token is passed from E1 to
activity A1. Next, A1 passes one token to event E2. E2 then passes tokens to activities A2,
A3, and A4, which all occur concurrently. Finally, event E3 may only fire after activities A2,
A3, and A4 have occurred.

Modified Petri nets combine a variant of Petri Nets with frames and rules. This

combination allows modeling systems in a compact and straightforward way. Through
Percnet, rules and functions can be added to the network which allows for more complex flow
control. Returning to the example in Figure 3, if event E1 represents the starting of an
automobile and the driver is required to be wearing his seat belt before ignition may occur then
event E1 may contain a rule:

If (seaLbelt ---= on)
then ignition
else do_nothing

In addition, the type of action to be performed for each activity may be described by a function
or small program. If activity A2 represents the actions performed by the fuel pump in an
automobile, those actions may be described by an expression:

gasoline = gasoline - (gasoline_consumption_rate)

Percnet models are "executable." After defining the system, a developer is allowed to

run the simulation. Tokens are depicted flowing through the system. Percnet also p.rovides a
means of modeling the systems interactions with the user as well as with the environment.

Using scenarios events external to the system may be defined. These events include
occurrence information - time of occurrence, duration of event, and frequency of occurrence as
well as effects of the action on the system. In the automobile system, Percnet's scenarios
provided a way to model user and environmental inputs. The user action of bucking a seat belt
may be defined as occurring at some particular time. The action of turning the key may occur
after the seat belt buckling has occurred. It is important to note that Percnet currently does not

4

provide synchronizationof activities andeventswith the real time clock. Time units are
provided,but norelation is establishedbetweentheseunitsandactualtime. Developersmust
ensurethattimeunitsareconsistentthroughoutthesystem.

Finally, Percnetprovides severalsimulation analysisoptions including workload
profiles, time-baseedperformanceprofiles,andameansof viewing all simulationdata. These
optionscouldbeusefulfor evaluationof user'sinteractionswith thesystem.

Figure4, showshow Percnetcouldbeusedto modelanautomobile. Variablesshould
beviewedasglobalvariablesrecordedonablackboard.Scenarios(userandenvironment)and
the automobilemayretrieve or modify informationon the blackboard. An exampleis the
calculationof speed.The userchoosesa gearandpressesthe acceleratorpedal. Theengine
calculatesthespeedbasedon thegearandtheamounttheacceleratorpedalis depressed.The
speedis postedon the blackboardand is fetchedby the user interface for display on the
dashboard.

_ o

Driver

Dashboard and
Controls

PERCNET
r ... -i

EngineI1
_ii!i_i!i_i_i_!_!__i_i_i._i_li_ii_i_!/i_i_..'.'_{_.__.ifliiiii,_..'.:_!_ii'._:_

[_ _:._".' !.. •": :': :_. =::::: +:: _: :,.'.:: _:",-_:;,:_Z:: :;"_::: :._ :'._:_. :, :>_'...........................,,+++......................::::: ::::::::::::::::::::::::::::::::::.

: : ::: ::: •

Road/_eather ::

Figure 4 - Percnet Structure for Automobile Example

7 =

m

2.4 Assumptions and Details

As stated previously, the automobile simulator implemented using Percnet, models
common automobile operation without focusing on one particular type of automobile; however,

some basic assumptions have been made abut the automobile. These are:

10 gallon gas tank
4 quarts oil capacity
6 units coolant capacity
5 gears (reverse, neutral, first, second, third, fourth)
manual transmission (clutch and manual shifting)
driver must be wearing seatbelt before ignition

In modeling the components of the engine, the model focuses on the most important
parts and tries to maintain the same level of detail for each. Modeling the complete electrical

5

w

F-.-_

system could have included objects representing each wire and sensor, but such a level of detail
is not necessary for the purposes of this research. This level of detail would be provided in a

high fidelity simulator. Some suggested extensions to the low fidelity simulator which has
been developed are provided at the conclusion of this section.

The major components of the engine modeled are:

fuel pump distributor battery
oil pump spark plugs alternator
water pump starter fan

The condition of these components is modeled using a boolean variable indicating that
either they are functioning or they are not. The boolean variables are then used as conditions
within events occurring during the simulation. For example,

if (fuel_pump_ok && (gasoline > 0.0))
then gasoline = gasoline - gasoine_use_constant
else stop_running

This means that as long as the fuel pump is working and there is gasoline, the engine consumes
gas; otherwise, the engine stops.

Figure 5, shows the top level Petri Net of the automobile simulator. The majority of
this net shows the actions of the driver and engine components up to the ignition of the engine.

More detail is shown (and will be explained) in subsequent subnetworks of the model.

L--

S: _s

distributor

activate /_x_ engine

spark

plugs

Figure 5 - Top-Level Petri Net of the Automobile Simulator

The starter is the component that is activated by the turning of the key. Before that starter can
begin working, however, the key should be turned on, the driver must be wearing his/her seat
belt, the car must be in neutral, and the battery must have a sufficient charge to start the starter.
In rule form, the pre-condition for activating the starter are:

6

W

L

7 m

=

if (key_on && seatbelt_on && (gear -= neutral) && battery_has_charge)
then activate_starter

else stop running

When all three preconditions are true, the starter is activated and control advances to the right in
the Petri net.

Once the starter has been activated, it must do its part to start the automobile. The
starter allows electricity to flow into the distributor where it is channeled into the spark plugs.

As long as the starter is functioning, the distributor and spark plugs are activated. In rule form
this is:

if starter_ok
then distributor &

else stop_running
spark_plugs

Finally, as long as the spark plugs and distributor are working properly and there is
gasoline, the spark from the spark plugs ignites the gasoline mixture in the engme and ignition
is achieved.

if (spark_plugs_ok) && (distributor_ok) && (gasoline > 0.0)
then ignition
else stop running

Now that ignition has been accomplished, the engine is running. The concentric circles
representing the engine_running activity in Figure 5 indicate that the state is shown in a subnet.
This subnet is shown in Figure 6.

oil pump fuel pump

calclacc alternator

Figure 6 - Engine Running Subnet

7

W

w

- __

w

w

The "running" event shown in Figure 6 initializes the rpm value to 1000 (which has
been chosen as the value for when the automobile is idling). Next, several events begin to

occur concurrently. The automobile begins to consume gasoline, pump oil, maintain the
charge on the battery, and regulate the engine temperature. Each of the components of the
automobile are examined in more detail in the following sections, and a complete list of rules is

presented in Appendix A.

Fuel Pump. As mentioned previously, as long as the fuel pump is functioning and
there is gasoline present, the fuel pump pumps fuel into the engine where it is consumed.

Actually, what occurs in the engine is that the gasoline is combined with air and forced into the
engine where it is compressed and ignited. The ignition of this gasoline/air mixture provides
power to the engine. This power is manifested in the turning of the flywheel. The turning of
the flywheel is then transferred to the wheels through the transmission system. The speed of
the wheels depends on the speed of the engine. Therefore, the rate of fuel consumption
increases as the speed and rpms increase. The fuel pump activity samples the current speed
and rpms to calculate the amount of fuel consumed by the engine. If at any time the fuel pump
ceases to operate or the engine consumes all of the fuel, the engine stops.

Alternator. The battery provides electricity to the engine through the spark plugs (the
spark initiates the ignition of the fuel mixture) as well as to the radio and other accessories
inside the passenger compartment. To prevent the battery from running down, the alternator

recharges the battery. With age, the battery may lose its ability.to hold the charge sent from the
alternator, but as long as the alternator operates the battery receives a charge.

Water Pump. The ignition (or explosion) occurring over and over in the engine
generates extraordinary amounts of heat in the engine. Therefore, the engine has a system to
regulate its own temperature. The coolant in the radiator and in various hoses is present to
reduce the temperature of the engine. If the coolant does not circulate through the engine, there
is no cooling effect. The water pump pumps the coolant through the cooling system (which
includes a condenser that cools down the coolant). This pumping which constantly absorbs
heat from the engine (via hoses that circulate through the main parts of the engine) and then
cools the engine (via coolant cooled by the condenser) helps to keep engine temperature at
acceptable levels.

Fan. In addition to the water pump, a small fan in the front of the engine compartment
draws air through the grill to provide extra cooling. Unlike the water pump, the fan only
operates if the engine temperature rises above a threshold value (typically around 250 degrees).
The fan also operates if the air conditioner is running no matter what the engine temperature is.

Oil Pump. Oil lubricates the engine components. Many of the metal components are
in constant motion against each other separated by a thin layer of oil. Without oil, the friction
of components touching each other would cause the engine to stop and most likely result in
serious damage to the engine. The oil pump circulates oil through the engine. If, at any time,
the oil pump ceases to operate or all of the oil leaks out of the engine, the engine will stop. The
automobile does not actually consume oil at all; the only way for the oil level to drop is for oil
to leak out.

Calc/Acc. The subnet "calc/acc" shown in Figure 6 depicts calculations performed

by the simulator reflecting the performance of the automobile as well as the effects of some
"less essential" features of the automobile. Figure 7 shows the details of this subnet.

8

w

|1 I III II

calculadons

_ (_-'_ sample

comfort

IITIIIIII...............

Figure 7 - Calc/Acc Subnet

Calculations. Three values best reflecting the performance of the automobile are

computed in the calculations activity - speed, rpm, and engine temperature. Both speed and
rpms are dependent on the current gear and the amount of throttle given. The relationship
between speed and rpm can be seen in the graph of Figure 8. Notice that the values for each
relate to the current gear. The amount of throttle needed to attain a given speed and rpm value
in each gear is also shown. In addition, the speed and rpm calculations factor in the effects of
the terrain (i.e., uphill and downhill) and the amount of brake the driver is delivering.

v

-x,

5000--

4000 --

3000--

2000--

I000--

RPM

second third
first " fourth

ii I itJ s_ s °°"

Over rll" .'-

I I I I I 1 I I
0 10 20 30 40 50 60 70 g0

Vehicle Speed

Figure 8 - RPMs vs Speed for each Gear

9

W

r--

v

Engine temperature should remain between 180 and 250 degrees and is dependent on
the current speed and rpms. Notice that in this situation there may be several independent
nodes in the simulator affecting one value. Engine temperature may be reduced by the water

pump and the fan. If the speed and rpms are changing then the engine temperature is
constantly changing in the calculations node as well. Such an approach shows how the
backboard may be used to effectively model the inner workings of a system (particularly an
interactive and concurrent one).

Visibility. Another value returned to the user interface is visibility - a measure of the
clarity of the windshield. Earlier the separation of simulator and environment was stressed.

Again, it is important to see that visibility is reduced by the environment (from rain, snow, or
darkness) and is improved by the automobile's accessories - wipers, defrost, and headlights
(low and high beams). Visibility may be viewed as a percentage of a perfectly clear view.
One hundred percent visibility would be the value on a clear day with a clean windshield. The
blackboard is again used to obtain an accurate simulation of events. The environment may
reduce the visibility. If the user takes action to increase visibility (e.g., turning on windshield
wipers in the rain or snow or turning on headlights at night) the visibility node increases
visibility.

The accessories which improve visibility also drain energy from the battery as tl2.ey
operate. It is a minimal amount while the automobile is operating, but ff left on after the engme
has stopped running (when the alternator is not able to do its recharging duties), the battery will
lose its charge.

Comfort. Several extra accessories are also part of the car and include heater, air
conditioner, and radio. The heater and air conditioner change the passenger compartment

temperature and use energy from the battery. The radio only consumes the battery's power.

Engine Stop. The PetTi Net representing the automobile passes from the ignition
portion to the engine running state and remains in the running state until some condition causes
the engine to stop running. It is important to see that the system may be modeled in such a way
that any from a list of events will pass control from the running state to the stopped state. The
conditions are:

if ((gasoline ==- 0.0) II (temperature > 300) II (key == 0) II
(rpm < 1200 && gear l= 0) II (rpm < 800 && gear == 0) II
(!fuel_pump_ok) 11(!oil_pump_ok) II (!spark_plug_ok) II
(!alternator_ok) II (battery <10 volts))

then engine_stop

The engine will stop running if the engine runs out of gas or runs out of oil; the
temperature rises above a certain threshold; the key is turned off; the engine stalls (when the
automobile is in some gear and the rpms fall below a threshold amoun0; the battery loses its
charge; or the fuel pump, oil pump, spark plugs or alternator fail.

2.5 Simulation

As mentioned previously, actual simulation of the automobile requires development of
scenarios which will model user inputs as well as environmental conditions. User inputs
consist of throttle, brake, gears, and the accessories mentioned above. One disadvantage of
using Percnet to model user actions as that user actions are no longer random. The actions to
be performed must be planned in advance including the time in the simulation that the action
will occur.

10

m

m

The environment scenarios include weather (rain and snow), brightness (day and

night), road conditions (angle of incline or decline), and random failures (e.g., oil leak). Each
of these environmental events has an effect on some blackboard value(s). In this way, the

environmental conditions are "factored into" the performance calculations.

2.6 Future Enhancements

The next step toward a more complete and effective simulation is to facilitate the
communication of a system modeling tool like Percnet with an interface modeling tool like
Sammi. If the two could be made to communicate (as shown in Figure 9), the simulation
would be much more accurate and informative. Both goals of simulation (analysis of systems

and interfaces) could be achieved.

V

v

7

W

m

l"

, PERCNET
i

, System Modeling
' Tool

User Interface] _ l SERVER Simulator

Design Tool _

Enviomment [

Figure 9 - Ideal Simulation Architecture

Possible extensions to the simulator include expansion of the model and refinement

(providing a more detailed description). Expansion could include new features such as cruise
control, fuel injection and maintenance assistance. Perhaps a more helpful maintenance
assistance feature would provide an on-board computer capable of basic engine troubleshooting
(e.g., suggesting to the driver that changing the air or fuel filter could clear up sudden
acceleration problems).

Refinement to the simulator would represent each engine component more exactly.
New components, including the suspension system, carburetor, and exhaust system would be
introduced as well. A truly high-fidelity model could be generated using automotive
engineering theory.

Basically, the quality of the simulator is limited only by the developer's knowledge of
the system. Any type of interface may be developed and tested using an interface development
tool. This tool will be connected to a system modeling tool, such as Percnet providing
complete analysis of a system early in development and allowing valuable savings in effort and
resources.

11

3.0 Human-Computer Interface

3.1 Implementation of the Automobile Interface

The user interface for the automobile simulator was implemented using Sammi, a

graphical user interface prototyping environment. Sammi combines the functions of a
graphical user interface with full network communication support, providing both client/server
and peer-to-peer communication options. The format editor of Sammi was used to develop the
static automobile display. The display's functionality was tested by executing it within the
runtime environment and connecting it to a random server and a test database through the
applications programming interface (API). Once the architecture of Percnet is modified to
allow interprocess communication, Sammi will communicate with Percnet, sending and
receiving messages and commands, through a server written with Sammi's API. The next
section describes the details of the automobile interface.

3.2 Detailed Description

This section provides a description of the interface which was developed for the
automobile simulator. The description begins with the windshield which is in the top portion
of the user interface shown in Figure 10.

Environment. The environmental conditions are shown on the left hand side of the

windshield. It is a large rectangle containing five smaller rectangles. The smaller rectangles
represent the following conditions: clear, raining, foggy, snowing, day, and night. If it is a
clear day, then a representation of the sun shining is shown in the Clear rectangle; if it is a rainy
day, then a representation of rain is shown in the Raining rectangle; if it is a foggy, day, then a
representation of fog is shown in the Foggy rectangle; and if it is snowing, then a
representation of snow is shown in the Snowing rectangle. It is possible that a representation
of two of the first four rectangles might be shown at the same time. Possible combinations
include: Clear and Raining, Raining and Foggy, Foggy and Snowing, and Clear and
Snowing. The Day/Night rectangle indicates what time of day it is.

Trip Tick. The trip tick is a pop-up window that gives the directions for the user to
follow.

Terrain. The terrain grade can be found on the right side of the windshield. This
larger rectangle contains nine bar charts that together represent the slope of the terrain. The bar
charts are set up in sequence so that when new terrain heights are reached, the old terrain
heights all shift one bar chart to the left. When the automobile begins to approach a hill, for
example, the bar chart on the far right would indicate so by rising higher than the bar chart to
its immediate left. The closer the automobile got to the hill, the further that representation of
the bar would move to the left. In the same manner, if the automobile began to approach a
down hill slope, the bar chart to the far right would indicate this by being lower than the bar
charts to its left.

Speed Limit. The speed limit can be found on the lower right hand corner of the
windshield.

The control panel (the bottom portion of Figure 10) will be described next.

Seat Belt. The seat belt button has a small square that is indented and red in color to
indicate that the belt is not presently being worn. When the user clicks on this button, the

indentation will raise and turn grey indicating that the seat belt is being worn.

12

F- I

"In- .j

_o _.-_ _oO

!_,"_. ° o_ o°o

0

I-- i

F-

LU

o,

,-, _ I ._,__-.,-,-I
IW=,-:_l

I_' _o"° I
_ I_o_ I

2

>- r-t_o

]:

13

e_
0

E
o

!

o

LU

LA.

v

Key. The key button is raised and says OFF. When the user clicks on this button, it
will indent and say ON. To turn the key back off the user clicks on the button again.

Oil Gauge. The oil gauge gives a graphical representation of the level of oil in the
automobile. When the oil level is high, the picture and the word "OIL" beneath the gauge are
black. When the oil is at a medium level, the picture and the word are blue. When the oil level
is low, the picture and the word flash red.

Turn Signal Indicators. The turn signal indicators (arrows) are connected to the
turn signal buttons. The left arrow flashes red when the left turn signal is activated, the right
arrow flashes red when the right turn signal is activated, and both flash when the emergency
light button is activated.

Fuel Gauge. The fuel gauge is located to the right of the oil gauge and the right turn
signal arrow. When the gas level is high, the picture and the word "GAS" in the picture
beneath the gas gauge are black. When gas is at a medium level, the picture and the word are
blue. When the gas is low, the picture and the word flash red. There is a small square right
beneath the gauge (not shown in Figure 10) which shows the numeric value of the gauge at any
given time.

Coolant Temperature Gauge. To the right of the gas gauge and the right turn

signal arrow is the coolant temperature gauge. Below the gauge is a picture and the words
"Coolant Temp."; these items behave in a manner similar to the oil and gas gauges.

Trip Tick. To the right of the gas gauge is the trip tick button. When activated by
clicking on it with the left mouse button, the Trip Tick Text window pops up in the middle of
the Windshield. The user may cancel the window at any time by clicking on the cancel button
at the bottom left of the trip tick text window. After two minutes, the text window
automatically cancels itself.

Turn Signal Buttons. Going to the left hand side of the control panel you can find
the turn signal buttons. These start out in the off position which is indicated by the indentation
of the OFF button. These four buttons (Left, Off, Right, and Emerg. Lights) are set up in such
a way that only one may be active at any one time. These buttons are connected to the left and
right turn signal indicators (arrows). If the Left button is active, the left arrow flashes; if the
Right button is active, the right arrow flashes; and if the Emerg. Lights button is active, both
the left and fight arrows flash red. The Off button returns the arrows to the original non-
flashing state.

Windshield Wiper Control Buttons. Below the turn signal buttons are the
windshield wiper control buttons. The control buttons include: Off, Low, Med, High, Delay.
These buttons start out with the Off button selected, which is indicated by the indented

diamond which is turned red in color. Only one of the buttons may be selected at any one time.
If the user clicks on a non-active button, it will become active and the former active one will
automatically become inactive, as indicated by the raised diamond which is grey in color.

Speedometer. The large meter in the middle left of the window represents the speed
of the car. The meter is currently connected to the MPH Slider Bar and gears at the bottom left
hand side of the control panel. The user controls the speed by clicking on the clutch button so
that it is active (indented). Then the user selects the gear desired by clicking on that gear.
When it indents, the user may release the clutch by clicking on it again so that it is inactive

(raised). Then the user may slide the slide bar to the fight to gain speed. To slow down, the
user clicks on the brake button. To put the automobile in neutral, the user activates the clutch

14

r_

m_

and then clicks on whichever gear is activated so that all gears are raised. The Speedometer
updates the speed every second and displays the speed two ways: by the meter's needle and in
numerical form towards the bottom middle of the meter.

Mileage. Between the speedometer and the MPH Slider Bar are two integer displays:
the odometer and the trip meter. The odometer registers total distance traveled, and the trip
meter is used to measure distance traveled per trip. To the right of the trip meter display is a
reset button that will reset the trip miles to zero when it is clicked

Battery Display. To the fight of the speedometer and below the gas gauge is the
Battery Display. This display will flash red if there is a problem with the battery.

Engine. Below the battery is a circle representing the engine. It will flash red if there
is a problem with the engine.

Time. Beneath the engine circle, there is a real time clock display.

Maintenance. Below the clock display is the Maintenance button. When the
Maintenance button is clicked, a popup maintenance window appears directly above it in the
Control Panel overlapping the Battery, Engine, and Clock displays. The user can select one of
three options: Gas, Oil, or Coolant. The user clicks on the "ok" button after they have selected
an option, or to cancel the maintenance menu, the user can click on the cancel button. The
maintenance menu will automatically disappear if nothing is selected within 60 seconds. If gas
is selected, then the gas gauge will show that the gas tank has been filled up; if oil is selected,
then the oil gauge shows that the oil has been filled; and if coolant is selected, a small message
indicating that coolant has been added is shown in a small text window under the Maintenance
button.

Tachometer. The large meter in the middle fight of the window represents the engine
speed in revolutions per minute (RPMs). Right now, this is not connected in such a way that it
would reflect the RPMs based on the speed of the car and the current gear.

Emergency Brake. Beneath the RPM meter is the Emergency Brake button. This
button starts out in the On position, as is indicated by the indentation of the button. The user
can turn the emergency brake off by clicking on the button. In the off position the button is
raised.

Lights. The final part of the Control Panel is the Lights button and the Light Indicator
display. There are five buttons for lights (Off, Park, Low, High, Fog) which are located to the
fight of the RPM meter on the Control Panel. These buttons start out with the Off button
selected as indicated by the slight indentation of that button. When the driver selects another
button, it will indent and the former indented one will automatically raise. If the Park button is
selected, the appropriate parking lights on the picture of the automobile will turn orange
indicating that the parking lights are on. If the Low button is selected, the parking lights come
on, the outer headlights on the automobile picture turn yellow, and the rear night lights turn red
to indicate that these lights are on. If the High button is selected, all the lights that would come
on if the the Low button was selected are indicated, and the center highlights turn yellow. If
the fog button is selected, all the lights indicated if the High button was selected are indicated,
and the fog lights on the front end of the car turn yellow. Selecting the Off button will turn the
circles back to the background color of white.

W
15

i

u

4.0 Evaluation

Evaluation provides a means of objectively assessing a design. It allows the
designer/developer to verify user and system performance against requirements, to assess the
performance of the user interface dialogue, and to provide data to the iterative design process.
Evaluation consists of a static and a dynamic evaluation component. Evaluation of the static
component will involve assessing the displays to determine whether or not they are in
compliance with standards such as the Flight Human Computer Interface (HCI) standards.
The dynamic component (which is addressed in this research) will consist of evaluation of the
interaction between the user and the system.

Evaluation of the dynamic component should be accomplished by conducting usability
studies. Given a functional prototype and some tasks that can be accomplished on that
prototype, the designers should observe how users interact with the prototype to accomplish
those tasks in order to identify improvements for the next design iteration. Measurable
evaluation parameters should include: time to learn to use the system (i.e., training time
measurement - how much time it takes to reach a particular level of proficiency), speed of task
performance (or time to complete representative tasks), rates and types of errors made by
users, retention over time, and subjective satisfaction. The load demands of the work situation
might also need to be assessed, as well as, whether or not there was effective operator
planning. For example, whether or not the user carried out the operation, carried out the
operation as efficiently as possible, used wrong commands, used too many keystrokes, or
received numerous help and error messages. The system should also be evaluated to determine
which features of the system were used or not used effectively. For example, the number of
times a help or explanation screen was requested will give the designer/developer some
indication of which features of the system should be enhanced and which should be eliminated.

Analysis of the errors and types of errors encountered will assist in redesign of the screens and
dynamic data objects.

There are several techniques which should be considered for the collection of this data.

They include embedded evaluation techniques, observation, and subjective satisfaction
measures. The embedded evaluation technique includes a capture/playback component and an
analysis component. The Capture feature captures a user's session and saves this information
to a log. This log can later be "played" back or analyzed. Reports such as the frequency of
each error message, menu-item selection, dialog-box appearance, help invocation, form-field
usage, etc., are of benefit in order to redesign the user interface.

Specific criteria for evaluation of the interface to the automobile simulator can be found
in Appendix B.

m
m

5.0 Conclusions

There is no current tool which allows for screen design, simulation, and evaluation.
The most advanced tools for rapid prototyping which do not require programming experience
are called UIMS (User Interface Management Systems). This term is used to describe software

tools that enable designers to create a complete and working user interface without having to
program in a traditional programming language. However, the users have to use a
programming language to implement additional features such as database search, network
communication, or scientific computation. An environment was investigated here which
allows for development, simulation, and evaluation of designs.

16

=

REFERENCES

Bass, Len and Coutaz, Joelle (1991). Developing Software for the User Interface. Reading,
Massachusetts: Addison-Wesley Publishing Company.

Hoyt, Wade A. (1981). Reader's Digest Comolete Car Care Manual. New York, New York:
Reader's Digest Press.

Payne, James A. (1982). Introduction to Simulation - Pro_amming Techniques and Methods
Qf Analysis. New York, New York: McGraw-Hill, Inc.

Perceptronics User's Manual. (1992). Woodland Hills, California: Perceptronics, Inc.

Peterson, James L. (1981). Petri Net Theory. and the Modeling of Systems. Englewood

Cliffs, New Jersey: Prentice-Hall, Inc.

Sammi Users Guide. (1992). Houston, Texas: Kinesix Corporation.

Shneiderman, Ben. (1992). Designing the User Interface: Strategies for Effective Human-
Computer Interaction Design1 Reading, Massachusetts: Addison-Wesley Publishing
Company.

r_

= =

w

17

7

W

r--
r--

W

Appendix A - Rule Base

Global Variables

Maintenance

gasoline, oil coolant

Calculations

gas_consumption = function of rpm, speed, gas_use_constant
speed = function of gear throttle, brake, incline
rpm = function of gear, throttle, brake, incline
direction = (reverse, none, forward)

engine temperature -- function of rpm, coolant, fan

I u.e,r.Jagu
throttle (%)
brake (%)
gear (neutral, reverse, fhrst, second, third, fourth)
key (on/off)
wipers, lights
A/C and setting, heater and setting

Components
fuel_pump_ok
water_pump_ok
oil_pump_ok
alternator_ok

battery_ok

starter_ok
distributor_ok

spark_plugs_ok
fan_on

Environment

brightness - % (day -0.0%, night = 100%)
frost- %

compartment_temperature, outside_temperature
visibility = function of windsheild debris (e.g., rain or snow), brightness (e.g., day or night)
incline = angle -> (+=uphill, ---downhill)

Ignition
Initial: engine_stop

if key and (battery>10) and seat_belt and (gear == neutral)
then activate_starter

else engine__stop

if' activate_starter and starter_ok
then distributor

spark_plugs
else engine_stop

if distributor_ok and spark_plugs_ok and (gasoline > 0.0)

then ignition
else engine_stop

18

w

Engine Running

while (!stop_running)

gas = gas - f(rpm, speed, gas_use_constant)

if battery < maximum_charge
then battery - f(battery_capability_to_maintain_charge)

if temp > 260
then fan = on

temperature = temperature - f(fan_ capability_to_cool)
else fan = off

if (water_pump_ok)
then temperature = f(rpm, coolant)
else temperature = f(coolant)

if wipers
then battery = battery - 0.00125

windsheild_debris = windsheild_debris - 70%

if low_beams
then battery = battery - 0.00125

if (brightness < 50%)
then brightness = brightness + 10%

if high_beams
then battery = battery - 0.00125

if (brighmess < 50%)
then brightness = brighmess + 20%

if defrost

then battery = battery - 0.00125
frost = frost - 10%

ifA/C

then battery = battery - (0.00125 * setting)
compartrnent_temp = compartment_temp - (setting * 10%)

if heater

then battery = battery - (0.00125 * setting)
compartment_temp = compartment_temp + (setting * 10%)

if radio

then battery = battery - 0.00125

if (!fuel_pump) or (gas == 0) or (!oil_pump) or (oil==0) or (!alternator) or
(temp > 300) or ((rpm < 800) and (gear != neutral)) or (key == off) or
(!spark_plugs)

then stop_running = True

end_while

engine_stop

19

w

Driver Actions (Inputs)

Add/Reduce Throttle
Add/Reduce Brake
Press clutch

Shift Gears (first, second, third, fourth, neutral, reverse)

Turn Key
Put on seatbelt

Depress emergency brake
Turn on: wipers, lights, turn signal indicators, defrost, A/C, heater, radio, etc.
Perform maintenance actions

Maintenance Actions

Add gas, oil, coolant

Items which need to be Monitored by Driver

Environment

Day/Night (Brightness)
Weather (Clear, Raining, Snowing, Foggy)

Terrain

Incline (Uphill or Downhill)

Speed Limit

Trip Tick

Automobile

Oil, Gas, Coolant Temperature, Battery, RPMs, Speed, Clock, Milage, &
Compartment Temperature

Possible Extension - Trouble Monitor (interacts with dashboard)

if (temp > 275)
then temp_too_high_message

if (rpm > 6000)
then Suggest "Shifting to a higher gear or slowing down"
else Suggest "Stop car, wait 30 minutes, add coolant"

if (gas < 1 gallon)
then low_on._gas_message

if (oil < 0.25 gallon)
then low_on_oil_message

if (battery < 10 volts)
then battery_low

Tro_leshootin g
Driver would enter symptoms and system would present probable causes

20

w

r _

Appendix B - Criteria for Evaluation of the Automobile Interface

Task Model
The task model establishes what the driver should do to obtain certain results.

. To start the engine
a. button the seat belt

b. push the clutch
c. depress the brake
d. turn on the key

. To start driving the car forward
a. free emergence brake
b. shift to first gear
c. free the brake

d. push accelerator until speed is equal to 7 mph

° To accelerate the car from 25 mph to 65 mph

a. push the clutch, change gear to 2 at the speed of 8 to 10 mph, push accelerator
b. push clutch, change the gear to 3 at the speed of 15 to 25 mph, push accelerator
c. push clutch, change gear to 4 at speed of 30 to 40 mph, push accelerator to 65 mph

o To decelerate the car from 65 mph to 7 mph
a. slide down the accelerator, push clutch, change gear to 3 at the speed of 30 to 40 mph
b. slide down the accelerator, push clutch, change gear to 2 at the speed of 15 to 25 mph
c. slide down the accelerator, push clutch, change gear to 1 at the speed of 8 to 10 mph

Q To stop the car
a. push clutch
b. push brake

, To back up the car

a. stop car
b. push clutch, change gear to reverse
c. free clutch, free brake, push accelerator to a speed less than 7 mph

Q To park the car
a. slow speed to less than 7 mph
b. stop car
c. put the park brake on

Q Turn right or left
a. turn on right or left indicator on at least 100 feet before the turning point
b. slow speed to limited range until the turning point
c. turn off the blinker and accelerate when passing the turning point

. Driving uphill
a. keep speed in the limited range:

push accelerator IIpush clutch, change to lower gear, and push accelerator

10. Driving downhill
a. keep speed in the limited range:

slide down accelerator IIpush clutch and change to higher gear.

21

W

-3
I

mw

IH

m
w

E_

= .

11 Environmental Conditions

a. Night: turn on low headlights
b. Clear: shut all lights off
c. Foggy: Turn fog lights on
d. Raining or Snowing: Turn on wipers

Events which might 9_or during the simulation
1. Speed limit zone: 30 mph in an urban area, 55 mph highways, & 65 on the interstate

2. Construction warning: Road Construction 1 mile, speed limit 30 mph

3. Sharp turn: speed limit 15 mph

4. Road slippery when wet, ice, and snow

. Information or Guidance: it tells the driver where the next gas station is, so that the

driver can plan to get gas to avoid running out of gas in the middle of the trip; it also
tells the driver where to change the path to reach his travel destination.

6. Railroad crossing: car should slow down when approaching the railroad

7. School, hospital zone: car should slow down to the limited speed.

. Complete stop
a. red light
b. stop sign
c. school bus stop
d. railroad having red light
e. emergency car passing

o Yield: when the driver sees the yield sign, the trip tick should also tell the driver
whether or not there is traffic. The driver should slow his speed when approaching
the yield sign. If there is no traffic the driver can proceed. Otherwise he/she should
make a complete stop.
a. yield signal
b. continuous yellow or flashing light
c. from private drive to public street

10. Overheat: stop for a while.

11. Environmental conditions:

12. Terrain: adjust the gears and accelerator to the desired speed.

13. Brake Failure: driver should turn on emergency light, use the emergency light, ease
up on the accelerator.

14. Car skidding: driver should turn on emergency light, not push brake, ease off the
accelerator, brake

Design of Evaluation Scenario
The _cenario will give the driver different driving conditions. The driver's reaction will be

recorded. The driver's response will be compared to the task model

22

